ESPACIOS VECTORIALES

CONCEPTO DE ESPACIO VECTORIAL.

Sea V un conjunto cualquiera y R el conjunto de números reales. En V definimos dos leyes de composición:

- una **interna** (**suma**) $V \times V \longrightarrow V$ respecto de la cual tiene estructura de *GRUPO CONMUTATIVO*, es decir que verifica las siguientes propiedades:
 - 1. Asociativa: $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w} \quad \forall \vec{u}, \vec{v}, \vec{w} \in V$
 - 2. Conmutativa: $\vec{u} + \vec{v} = \vec{v} + \vec{u} \quad \forall \vec{u}, \vec{v} \in V$
 - 3. Elemento neutro o nulo: $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u} \quad \forall \vec{u} \in V$
 - 4. Elemento simétrico u opuesto: $\forall \vec{u} \in V \ \exists \vec{u}' \in V \ / \vec{u} + \vec{u}' = \vec{u}' + \vec{u} = \vec{0}$
- otra **externa** (**producto por un número real**) $R \times V \longrightarrow V$ que verifica las siguientes propiedades:
 - 1. Distributiva para la suma de *V*:

$$\alpha \cdot (\vec{u} + \vec{v}) = \alpha \cdot \vec{u} + \alpha \cdot \vec{v} \quad \forall \alpha \in R, \ \forall \vec{u}, \vec{v} \in R$$

2. Distributiva para la suma de números reales:

$$(\alpha + \beta) \cdot \vec{u} = \alpha \cdot \vec{u} + \beta \cdot \vec{u} \quad \forall \alpha, \beta \in \mathbb{R}, \ \forall \vec{u} \in \mathbb{V}$$

3. Pseudoasociativa o asociativa mixta:

$$\alpha \cdot (\beta \cdot \vec{u}) = (\alpha \cdot \beta) \cdot \vec{u} \quad \forall \alpha, \beta \in R, \ \forall \ \vec{u} \in V$$

4. El elemento unidad de *R* es elemento unidad de la ley externa:

$$1 \cdot \vec{u} = \vec{u} \quad \forall \vec{u} \in V$$

Con todo esto, V tiene estructura de **ESPACIO VECTORIAL** sobre el cuerpo de números reales.

A los elementos del conjunto V se les llama "vectores" y a los números reales "escalares".

El espacio vectorial es real porque en la ley de composición externa utilizamos elementos del conjunto de números reales.

EJEMPLOS de conjuntos que tienen estructura de espacio vectorial.

EL CONJUNTO R²

En el conjunto $R^2 = R \times R = \{(x, y) / x, y \in R\}$ definimos las operaciones:

SUMA:
$$(x, y) + (x', y') = (x + x', y + y')$$

PRODUCTO:
$$k \cdot (x, y) = (k \cdot x, k \cdot y)$$

Vamos a probar que R^2 con las operaciones definidas tiene estructura de espacio vectorial. Para ello tendremos que ver que se cumplen todas las propiedades enumeradas anteriormente:

RESPECTO DE LA SUMA:

1. Asociativa: (x, y) + [(x', y') + (x'', y'')] = [(x, y) + (x', y')] + (x'', y'')

$$(x, y) + [(x', y') + (x'', y'')] = (x, y) + (x'+x'', y'+y'') = (x + (x'+x''), y + (y'+y'')) =$$

por la propiedad asociativa de los números reales:

=
$$((x + x') + x'', (y + y') + y'')$$
 = {por la definición de suma en \mathbb{R}^2 } =
= $(x + x', y + y') + (x'', y'')$ = {por la definición de suma en \mathbb{R}^2 } =
= $[(x, y) + (x', y')] + (x'', y'')$

2. Conmutativa: (x, y) + (x', y') = (x', y') + (x, y)

$$(x, y) + (x', y') = \{ \text{por la definición de suma en } \mathbb{R}^2 \} = (x + x', y + y') =$$

por la conmutatividad de los números reales:

=
$$(x'+x, y'+y)$$
 = {por la definición de suma en \mathbb{R}^2 } = $(x', y') + (x, y)$

3. Existencia del elemento neutro o nulo: (x, y) + (x', y') = (x', y') + (x, y) = (x, y)

Tratemos de buscar cual es el elemento neutro o nulo: (x, y) + (x', y') = (x, y)

Por la definición de la suma:
$$(x, y) + (x', y') = (x + x', y + y')$$

Para que dos elementos de \mathbb{R}^2 sean iguales se tiene que verificar que sean iguales cada una de sus componentes. Así:

$$\begin{cases} x + x' = x \\ y + y' = y \end{cases} \Rightarrow \begin{cases} x' = 0 \\ y' = 0 \end{cases}$$

En consecuencia, el elemento neutro de la suma de R^2 es el elemento (0,0).

4. Existencia de elemento simétrico u opuesto:

$$\forall (x, y) \in \mathbb{R}^2 \quad \exists (x', y') \in \mathbb{R}^2 \quad / (x, y) + (x', y') = (0,0) \quad \text{(elemento neutro)}$$

Tendremos:

$$(x,y) + (x',y') = (0,0) \implies (x+x',y+y') = (0,0) \implies \begin{cases} x+x'=0 \\ y+y'=0 \end{cases} \implies \begin{cases} x'=-x \\ y'=-y \end{cases}$$

En consecuencia, el elemento simétrico de (x, y) será (-x, -y).

Con todo esto, R^2 con la operación suma, $\{R^2,+\}$, tiene estructura de **GRUPO CONMUTATIVO.**

RESPECTO DEL PRODUCTO POR UN NÚMERO REAL:

1. Distributiva respecto de la suma de R^2 :

$$k \cdot [(x, y) + (x', y')] = k \cdot (x, y) + k \cdot (x', y')$$
 $\forall k \in \mathbb{R}$ $y \quad \forall (x, y), (x', y') \in \mathbb{R}^2$

En efecto:

$$k \cdot [(x, y) + (x', y')] = \{ \text{por la suma de } R^2 \} = k \cdot (x + x', y + y') = \{ \text{por la ley externa} \}$$

$$\text{de } R^2 \} = (k \cdot (x + x'), k \cdot (y + y')) = \{ \text{por la distributividad del producto de } R \} = (kx + kx', ky + ky') = \{ \text{por la ley interna} \} = (kx, ky) + (kx', ky') = \{ \text{por la ley externa} \} = k \cdot (x, y) + k \cdot (x', y')$$

2. Distributiva respecto de la suma de números reales:

$$(k+k')\cdot(x,y)=k\cdot(x,y)+k'\cdot(x,y)$$
 $\forall k,k'\in R \ y \ \forall (x,y)\in R^2$

En efecto:

$$(k + k') \cdot (x, y) = \{ \text{por la ley externa de R}^2 \} = ((k + k') \cdot x, (k + k') \cdot y) =$$

$$= \{ \text{por la distributividad del producto de } \mathbf{R} \} = (kx + k'x, ky + k'y) =$$

$$= \{ \text{por la ley interna} \} = (kx, ky) + (k'x, k'y) =$$

$$= \{ \text{por la ley externa} \} = k \cdot (x, y) + k' \cdot (x, y)$$

3. Pseudoasociativa o asociativa mixta:

$$k \cdot [k' \cdot (x, y)] = (k \cdot k') \cdot (x, y) \quad \forall k, k' \in R \quad y \quad \forall (x, y) \in R^2$$

En efecto:

$$k \cdot [k' \cdot (x, y)] = \{ \text{por la ley externa} \} = k \cdot (k' \cdot x, k' \cdot y) = \{ \text{por la ley externa} \} =$$

$$= (k \cdot (k' \cdot x), k \cdot (k' \cdot y)) = \{ \text{Por la asociatividad del producto de números reales} \} =$$

$$= ((k \cdot k') \cdot x, (k \cdot k') \cdot y) = \{ \text{por la ley externa} \} = (k \cdot k') \cdot (x, y)$$

4. Elemento neutro del producto externo: 1.(x, y) = (x, y) $\forall (x, y) \in \mathbb{R}^2$

En efecto: $1.(x, y) = \{ \text{ por la ley externa } \} = (1.x, 1.y) = (x, y)$

puesto que el número real 1 es el elemento neutro del producto de números reales.

En consecuencia, $\{R^2, +, \cdot R\}$ tiene estructura de espacio vectorial real.

EL CONJUNTO R³.

Definimos el conjunto R^3 de la siguiente forma:

$$R^3 = R \times R \times R = \{(x, y, z) / x, y, z \in R\}$$

Se definen en él las mismas operaciones que en \mathbb{R}^2 :

SUMA:
$$(x, y, z) + (x', y', z') = (x + x', y + y', z + z')$$

PRODUCTO POR UN NÚMERO REAL:

$$k.(x, y, z) = (kx, ky, kz) \quad \forall k \in \mathbb{R} \ y \ \forall (x, y, z) \in \mathbb{R}^3$$

De análoga manera a como hemos trabajado en R^2 , podríamos comprobar que se cumplen las mismas propiedades en R^3 .

En general, podemos demostrar que el conjunto R^n tiene estructura de espacio vectorial real.

Otros conjuntos que también tienen estructura de espacio vectorial son:

- * El conjunto de números complejos
- * El conjunto de polinomios en una indeterminada.
- * El conjunto de funciones reales.

PROPIEDADES DE LAS OPERACIONES.

Además de las propiedades necesarias para la estructura de espacio vectorial, las operaciones definidas en los mismos cumplen las siguientes:

- $0 \cdot \vec{u} = \vec{0}$, cualquiera que sea el vector \vec{u} de V.
- $k \cdot \vec{0} = \vec{0}$, cualquiera que sea el número real k.
- $k \cdot \vec{u} = \vec{0} \iff k = 0 \text{ o } \vec{u} = \vec{0}$
- $k \cdot (-\vec{u}) = (-k) \cdot \vec{u} = -(k \cdot \vec{u})$

SUBESPACIOS VECTORIALES.

Sea V un espacio vectorial real. Se llama **subespacio vectorial** de V a todo subconjunto W de V que, respecto de las leyes de composición de V, tenga estructura de espacio vectorial, es decir

$$\{W,+,R\}$$
 es subespacio vectorial de V , si $W \subset V$ y $\{W,+,R\}$ es un espacio vectorial.

Es evidente que todo espacio vectorial V admite siempre, al menos dos subespacios vectoriales: el propio espacio V y el subespacio formado exclusivamente por el vector nulo. Estos subespacios reciben el nombre de **subespacios triviales o impropios**. Cualquier otro, si existe, recibe el nombre de **subespacio propio**.

Caracterización de subespacios

"La condición necesaria y suficiente para que un subconjunto W del espacio vectorial $\{W,+,R\}$ sea un subespacio vectorial es que verifique

$$\alpha \cdot \vec{u} + \beta \cdot \vec{v} \in W \quad \forall \alpha, \beta \in R \quad y \quad \forall \vec{u}, \vec{v} \in W''$$

COMBINACIÓN LINEAL DE VECTORES.

Se dice que un vector $\vec{u} \in V$ es "combinación lineal" de los vectores $\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_k$ de V si existen unos escalares $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_k$ que nos permitan expresar el vector de la forma:

$$\vec{u} = \lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \lambda_3 \cdot \vec{u}_3 + \dots + \lambda_k \cdot \vec{u}_k$$

Sea $S = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_k\}$ un conjunto de vectores del espacio vectorial V y sea L(S) el conjunto de todas las combinaciones lineales que podamos formar con los vectores

de S. Se puede demostrar que L(S) con las operaciones de V es un espacio vectorial y, por tanto, sería un subespacio vectorial de V.

A partir de la propia definición su deduce que:

- \downarrow Todo vector es combinación lineal de sí mismo, puesto que $\vec{u} = 1 \cdot \vec{u}$.
- ♣ El vector cero es combinación lineal de cualquier conjunto de vectores puesto que siempre tendremos la posibilidad de que todos los escalares sean cero:

$$0\cdot \vec{u}_1 + 0\cdot \vec{u}_2 + 0\cdot \vec{u}_3 + \cdots + 0\cdot \vec{u}_k = \vec{0}$$

El problema que se plantearía a continuación sería estudiar si aparte de esta existen otras combinaciones lineales del vector nulo. Este problema nos lleva a estudiar la

DEPENDENCIA LINEAL DE VECTORES.

Se dice que los vectores $\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_k$ de un espacio vectorial V son linealmente dependientes si existen k números reales $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_k$ no todos simultáneamente nulos, tales que verifiquen que

$$\lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \lambda_3 \cdot \vec{u}_3 + \dots + \lambda_k \cdot \vec{u}_k = \vec{0}$$

En caso de que todos los escalares sean nulos, los vectores son linealmente independientes.

PROPOSICIÓN

Si k vectores son linealmente dependientes, al menos uno de ellos se puede obtener a partir de los restantes.

En efecto, consideremos que los vectores $\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_k$ son linealmente dependientes.

Teniendo en cuenta esta hipótesis, existirán k escalares, no todos nulos, tales que

$$\lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \lambda_3 \cdot \vec{u}_3 + \dots + \lambda_k \cdot \vec{u}_k = \vec{0}$$

De entre todos los escalares, al menos hay uno que no es cero. Supongamos que $\lambda_1 \neq 0$ y despejemos \vec{u}_1 : $\vec{u}_1 = -\frac{\lambda_2}{\lambda_1} \cdot \vec{u}_2 - \frac{\lambda_3}{\lambda_1} \cdot \vec{u}_3 - \dots - \frac{\lambda_k}{\lambda_k} \cdot \vec{u}_k$

con lo cual, por lo menos uno de ellos, \vec{u}_1 , queda expresado en función de los restantes.

Se dice, en este caso, que el vector \vec{u}_1 , es combinación lineal de los restantes vectores.

La recíproca de esta proposición también es cierta:

Si un vector es combinación lineal de otros, el conjunto formado por todos ellos es linealmente dependiente.

EJEMPLOS.

Comprobar la dependencia de los vectores (2,-1), (1,3) y (1,-4).

Para estudiar la dependencia o independencia de estos vectores, establecemos la c.l. de ellos: a.(2,-1) + b.(1,3) + c.(1,-4) = (0,0)

Operando e identificando, obtenemos el sistema:

$$2a+b+c=0$$

$$-a+3b-4c=0$$

Resolviendo el sistema obtenido:

$$a = 3b - 4c \Rightarrow 2.(3b - 4c) + b + c = 0 \Rightarrow 6b - 8c + b + c = 0 \Rightarrow 7b - 7c = 0 \Rightarrow b = c$$

Como
$$a = 3b - 4c \Rightarrow a = 3c - 4c \Rightarrow a = -c$$

Para cada valor que le diéramos a "c" obtendríamos otros valores para "a" y para "b" (podríamos tener valores para a, b, c distintos de cero). En consecuencia los vectores son linealmente dependientes.

■ Comprobar la dependencia de los vectores (2,-1) y (1,3).

Para estudiar la dependencia o independencia de estos vectores, establecemos la c.l. de ellos: a.(2,-1) + b.(1,3) = (0,0)

Operando e identificando, obtenemos el sistema:

$$2a+b=0$$

$$-a+3b=0$$

Resolviendo el sistema obtenido:

$$a = 3b \implies 2.(3b) + b = 0 \implies 6b + b = 0 \implies 7b = 0 \implies b = 0$$

Como $a = 3b \implies a = 0$

En consecuencia, los vectores son linealmente independientes.

■ Comprobar la dependencia de los vectores (1,2,3), (2,1,3) y (1,0,1).

Establecemos la combinación lineal de ellos:

$$a \cdot (1,2,3) + b \cdot (2,1,3) + c \cdot (1,0,1) = (0,0,0)$$

Operando e identificando componente a componente, obtenemos:

$$a+2b+c=0$$

$$2a+b=0$$

$$3a+3b+c=0$$

resolviendo, a continuación, el sistema resultante.

Despejamos c en la primera ecuación: c = -a - 2b y sustituimos en la tercera, quedando un sistema de dos ecuaciones con dos incógnitas:

$$3a+3b+(-a-2b) = 0$$

$$\Rightarrow \begin{cases}
2a+b=0 \\
2a+b=0
\end{cases}$$

Resulta que las dos ecuaciones del sistema son iguales, por lo que podemos quedarnos con una sola ecuación y despejar una incógnita en función de la otra:

$$2a + b = 0 \implies b = -2a$$

Llevando el valor obtenido donde teníamos despejada la "c" nos queda:

$$c = -a - 2b \implies c = -a - 2(-2a) \implies c = -a + 4a \implies c = 3a$$

Para cada valor que le diéramos a "a" obtendríamos otros valores para "b" y para "c" (podríamos tener valores para a,b,c distintos de cero). En consecuencia los vectores son linealmente dependientes.

SISTEMA GENERADOR DE UN ESPACIO VECTORIAL.

Sea V un espacio vectorial real y $G = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_p\}$ un conjunto de vectores de V.

Se dice que G es un **SISTEMA GENERADOR** del espacio vectorial V si cualquier vector del espacio V se puede expresar como combinación lineal de los vectores de G:

$$\vec{u} = \lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \lambda_3 \cdot \vec{u}_3 + \dots + \lambda_n \cdot \vec{u}_n$$

Sea $G' = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_p, \vec{u}_{p+1}\}$ un sistema generador de V. Si \vec{u}_{p+1} es combinación lineal de los restantes vectores de G', el sistema resultante de suprimir \vec{u}_{p+1} , $G = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_p\}$ es también un sistema generador de V.

EJEMPLOS.

Sea C el conjunto de los números complejos y consideremos el espacio vectorial $\{C,+,R\}$. Demostrar que el conjunto $G = \{1+i,1-i\}$ forma un sistema generador del espacio vectorial $\{C,+,R\}$.

Para demostrar que es un sistema generador de C, tendremos que probar que cualquier complejo de la forma a+bi se puede expresar como combinación lineal de los complejos de nuestro conjunto:

$$a + bi = \alpha . (1 + i) + \beta . (1 - i)$$

Para que se cumpla la condición anterior tendremos que encontrar los escalares α y β que nos dan al vector como c.l. de los vectores de G.

Operando en *C*, tenemos:

$$a + bi = (\alpha + \beta) + (\alpha - \beta).i$$
 \Rightarrow
$$\begin{cases} a = \alpha + \beta \\ b = \alpha - \beta \end{cases}$$

Resolviendo el sistema resultante, obtenemos:

Sumando las ecuaciones: $2.\alpha = a + b \implies \alpha = \frac{a+b}{2}$

Restando las ecuaciones: $2.\beta = a - b \implies \beta = \frac{a - b}{2}$

En consecuencia, como hemos encontrado α y β dependiendo de a, b (los afijos del complejo), cualquier complejo lo podremos expresar como combinación lineal de los complejos de nuestro conjunto G y, por tanto, forma un sistema generador para C.

■ Demostrar que el conjunto de vectores $\{(1,2), (2,-1)\} \subset \mathbb{R}^2$ es un sistema generador de $\mathbb{R}^2(\mathbb{R})$.

Consideremos un elemento cualquiera (x,y) perteneciente a \mathbb{R}^2 y veamos si lo podemos expresar como combinación lineal de los vectores de nuestro conjunto:

$$(x, y) = \alpha.(1,2) + \beta.(2,-1) \implies (x, y) = (\alpha + 2.\beta, 2.\alpha - \beta) \implies \begin{cases} x = \alpha + 2.\beta \\ y = 2.\alpha - \beta \end{cases}$$

Resolvemos el sistema resultante: Despejamos α en la primera ecuación y la sustituimos en la segunda:

$$\alpha = x - 2.\beta \implies y = 2.(x - 2.\beta) - \beta \implies y = 2x - 5.\beta \implies \beta = \frac{2x - y}{5}$$

Sustituyendo el valor obtenido en α nos queda:

$$\alpha = x - 2.\beta \implies \alpha = x - 2 \cdot \frac{2x - y}{5} \implies \alpha = \frac{5x - 2.(2x - y)}{5} \implies \alpha = \frac{x + 2y}{5}$$

En consecuencia, nuestro conjunto de vectores forma un sistema generador para \mathbb{R}^2 .

■ Demostrar que el conjunto de vectores $\{(1,2,0), (2,-1,1), (1,0,1)\} \subset \mathbb{R}^3$ es un sistema generador de $\mathbb{R}^3(\mathbb{R})$.

Consideremos un elemento cualquiera (x,y,z) perteneciente a \mathbb{R}^3 y veamos si lo podemos expresar como combinación lineal de los vectores de nuestro conjunto:

$$(x, y, z) = a.(1,2,0) + b.(2,-1,1) + c.(1.0.1) \implies (x, y, z) = (a + 2b + c, 2a - b, b + c)$$

Identificando componente a componente, nos queda el sistema:

$$\begin{cases} x = a + 2b + c \\ y = 2a - b \\ z = b + c \end{cases}$$

Resolvemos el sistema obtenido:

$$\begin{vmatrix} a+2b+c=x \\ 2a-b=y \\ b+c=z \end{vmatrix} \Rightarrow \begin{cases} a=x-2b-c \\ 2.(x-2b-c)-b=y \\ b+c=z \end{cases} \Rightarrow \begin{cases} 2x-4b-2c-b=y \\ b+c=z \end{cases} \Rightarrow \Rightarrow \begin{cases} -5b-2c=y-2x \\ b+c=z \end{cases} \Rightarrow \begin{cases} -5.(z-c)-2c=y-2x \Rightarrow -5z+5c-2c=y-2x \Rightarrow b+c=z \end{cases} \Rightarrow 3c=-2x+y+5z \Rightarrow c=\frac{-2x+y+5z}{3}$$

Sustituyendo este valor de c en donde teníamos despejada b, nos queda:

$$b = z - c = z - \frac{-2x + y + 5z}{3} = \frac{3z + 2x - y - 5z}{3} \implies b = \frac{2x - y - 2z}{3}$$

Sustituyendo en *a* los valores de *b* y *c*, obtenemos:

$$a = x - 2b - c = x - 2 \cdot \frac{2x - y - 2z}{3} - \frac{-2x + y + 5z}{3} =$$

$$= \frac{3x - 2.(2x - y - 2z) - (-2x + y + 5z)}{3} \implies a = \frac{x + y - z}{3}$$

En consecuencia, como hemos podido encontrar los escalares que nos dan un vector cualquiera de \mathbb{R}^3 como c.l. de los vectores de nuestro conjunto, se deduce que éste forma un sistema generador de $\mathbb{R}^3(\mathbb{R})$.

BASE DE UN ESPACIO VECTORIAL.

Un conjunto de vectores $B = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_n\} \subset V$ es una **BASE** del espacio vectorial V si se verifica que:

- lacktriangle B es un sistema generador de V.
- \bot Los vectores de B son linealmente independientes.

EJEMPLOS.

■ Demostrar que el conjunto de vectores $\{(1,2), (2,-1)\} \subset \mathbb{R}^2$ es una base de $\mathbb{R}^2(\mathbb{R})$.

Como ya hemos demostrado en los ejemplos anteriores que este conjunto de vectores forman un sistema generador para R², para probar que es una base tendremos que demostrar que los vectores son linealmente independientes:

Para estudiar la dependencia o independencia de estos vectores, establecemos la c.l. de ellos:

$$a \cdot (1,2) + b \cdot (2,-1) = (0,0)$$

Operando e identificando, obtenemos el sistema:

$$a + 2b = 0$$

$$2a - b = 0$$

Resolviendo el sistema obtenido:

$$a = -2b \implies 2 \cdot (-2b) + b = 0 \implies -4b + b = 0 \implies -3b = 0 \implies b = 0$$

Como $a = -2b \implies a = 0$

En consecuencia, los vectores son linealmente independientes y, por tanto, nuestro conjunto de vectores es una base de \mathbb{R}^2 .

En general, podríamos demostrar que cualquier pareja de elementos de \mathbb{R}^2 que no sean proporcionales, forman una base de dicho espacio vectorial. Por tanto, tendríamos infinitas bases para el espacio vectorial $\mathbb{R}^2(\mathbb{R})$; la más sencilla de todas ellas es la formada por los vectores $\{(1,0), (0,1)\}$ que recibe el nombre de BASE CANÓNICA de $\mathbb{R}^2(\mathbb{R})$.

■ Demostrar que el conjunto de vectores $\{(1,2,0), (2,-1,1), (1,0,1)\} \subset \mathbb{R}^3$ es una base de $\mathbb{R}^3(\mathbb{R})$.

Como ya hemos demostrado en los ejemplos anteriores que este conjunto de vectores forman un sistema generador para $\mathbb{R}^3(\mathbb{R})$, para probar que es una base tenemos que demostrar que los vectores son linealmente independientes:

$$a.(1,2,0) + b.(2,-1,1) + c.(1.0,1) = (0,0,0) \Rightarrow (a+2b+c,2a-b,b+c) = (0,0,0)$$

Identificando componente a componente, nos queda el sistema:

$$\begin{cases} a+2b+c=0\\ 2a-b=0\\ b+c=0 \end{cases}$$

Resolvemos el sistema obtenido:

$$\begin{vmatrix} a+2b+c=0 \\ 2a-b=0 \\ b+c=0 \end{vmatrix} \Rightarrow \begin{cases} a=-2b-c \\ 2.(-2b-c)-b=0 \\ b+c=0 \end{cases} \Rightarrow \begin{cases} -4b-2c-b=0 \\ b+c=0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} -5b - 2c = 0 \\ b + c = 0 \end{cases} \Rightarrow \begin{cases} -5.(-c) - 2c = 0 \Rightarrow 5c - 2c = 0 \Rightarrow 3c = 0 \Rightarrow c = 0 \\ b = -c \end{cases}$$

Sustituyendo en b obtenemos b=0 y sustituyendo los dos valores obtenidos en a, nos queda también que a=0.

Por tanto, nuestro conjunto de vectores forma una base de $\mathbb{R}^3(\mathbb{R})$.

En general, podemos demostrar que toda terna de vectores de $\mathbb{R}^3(\mathbb{R})$ que sean l.i. forman una base de dicho espacio vectorial. En consecuencia, tendríamos infinitas bases para el espacio vectorial $\mathbb{R}^3(\mathbb{R})$; la más sencilla de todas es la formada por los vectores $\{(1,0,0),(0,1,0),(0,0,1)\}$ que recibe el nombre de BASE CANÓNICA de $\mathbb{R}^3(\mathbb{R})$.

Por tanto, todo espacio vectorial V que esté generado por un número finito de vectores, tiene una base.

TEOREMA DE LA BASE.

Todas las bases de un mismo espacio vectorial tienen el mismo número de elementos.

Gracias a esto, podemos enunciar el siguiente resultado:

DIMENSIÓN DE UN ESPACIO VECTORIAL.

Se llama **dimensión** de un espacio vectorial V al número de vectores que tiene una cualquiera de sus bases.

A la dimensión del espacio V la designaremos por dimV.

EJEMPLOS:

- 1. La dimensión del espacio $\mathbf{R}^2(\mathbf{R})$ es dos puesto que la base está formada por dos vectores.
- 2. La dimensión del espacio $\mathbb{R}^3(\mathbb{R})$ es tres puesto que la base está formada por tres vectores.

COORDENADAS DE UN VECTOR RESPECTO DE UNA BASE.

Sea V(R) un espacio vectorial real de dimensión n y consideremos una base $B = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \cdots, \vec{u}_n\} \subset V$

Se llaman coordenadas del vector \vec{u} respecto de la base \vec{B} , al conjunto de escalares $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ que nos permiten expresar el vector como combinación lineal de los vectores de la base, es decir,

$$\vec{u} = \alpha_1 \cdot \vec{u}_1 + \alpha_2 \cdot \vec{u}_2 + \alpha_3 \cdot \vec{u}_3 + \dots + \alpha_n \cdot \vec{u}_n$$

PROPOSICIÓN.

"Las coordenadas de una vector respecto de una base son únicas".

En efecto: Supongamos que el vector \vec{u} tiene dos coordenadas distintas respecto de la misma base \vec{B} , es decir que, el vector lo podremos expresar mediante dos combinaciones lineales distintas de la misma base:

$$\vec{u} = \alpha_1 \cdot \vec{u}_1 + \alpha_2 \cdot \vec{u}_2 + \alpha_3 \cdot \vec{u}_3 + \dots + \alpha_n \cdot \vec{u}_n$$

$$\vec{u} = \beta_1 \cdot \vec{u}_1 + \beta_2 \cdot \vec{u}_2 + \beta_3 \cdot \vec{u}_3 + \dots + \beta_n \cdot \vec{u}_n$$

Restando ambas expresiones obtenemos:

$$\vec{0} = (\alpha_1 - \beta_1) \cdot \vec{u}_1 + (\alpha_2 - \beta_2) \cdot \vec{u}_2 + (\alpha_3 - \beta_3) \cdot \vec{u}_3 + \dots + (\alpha_n - \beta_n) \cdot \vec{u}_n$$

Puesto que los vectores de la base son l.i. los escalares de la c.l. obtenida deben de ser nulos, por lo que:

$$\alpha_1 - \beta_1 = 0$$
 $\alpha_2 - \beta_2 = 0$ $\alpha_3 - \beta_3 = 0$ \cdots $\alpha_n - \beta_n = 0$

y, en consecuencia,

$$\alpha_1 = \beta_1$$
 $\alpha_2 = \beta_2$ $\alpha_3 = \beta_3$ \cdots $\alpha_n = \beta_n$

Por tanto, las coordenadas de un vector respecto de la base \boldsymbol{B} son únicas.

 Hallar las coordenadas de los vectores de la base canónica respecto de la base formada por los vectores {(1,1,0), (1,0,1), (0,1,1)}.

Para calcular las coordenadas de los vectores de la base canónica respecto de la base dada, tendremos que calcular los escalares que nos dan a cada uno de los vectores de la base canónica como c.l. de los vectores de la base {(1,1,0), (1,0,1), (0,1,1)}.

Tomemos el primer vector de la base canónica (1,0,0) y vamos a expresarlo como c.l. de la base propuesta. Tendremos:

$$(1,0,0) = a.(1,1,0) + b.(1,0,1) + c.(0,1,1)$$
 \Rightarrow $(1,0,0) = (a+b,a+c,b+c)$

Identificando, componente a componente, obtenemos:

$$a+b=1$$

$$a+c=0$$

$$b+c=0$$

Resolviendo el sistema (despejamos a y b en función de c):

$$\begin{vmatrix} a+b=1 \\ a+c=0 \\ b+c=0 \end{vmatrix} \Rightarrow \begin{cases} -c-c=1 \Rightarrow -2c=1 \Rightarrow c=-\frac{1}{2} \\ a=-c \\ b=-c \end{cases}$$

Por tanto, las coordenadas del vector (1,0,0) respecto de la base dada serán $(\frac{1}{2},\frac{1}{2},-\frac{1}{2})$.

Operando de idéntica forma con los vectores (0,1,0) y (0,0,1) obtendríamos las coordenadas de ellos.

EJERCICIOS PROPUESTOS.

- **1.** Sea $W = \{(0, x), x \in R\}$, $W \subset R^2$. Demostrar que W es un subespacio vectorial de $\{R^2, +, R\}$.
- **2.** Demostrar que la intersección de dos subespacios vectoriales de V es otro subespacio vectorial de V.
- **3.** Comprobar si los vectores $\vec{u} = (3,1,2)$ y $\vec{v} = (4,-1,2)$ de \mathbb{R}^3 son linealmente independientes. Comprobar si los vectores $\vec{u} = (-1,1,0)$ y $\vec{v} = (3,-3,0)$ de \mathbb{R}^3 son linealmente independientes.
- **4.** Hallar el valor de k para que los vectores $\vec{u} = (1, k, 0)$, $\vec{v} = (-1, 1, k)$ y $\vec{w} = (k, 0, 1)$ del espacio vectorial $\{R^3, +, R\}$ sean linealmente dependientes.
- **5.** Sea un espacio vectorial $\{V,+,R\}$. Demostrar que si los vectores \vec{u} , \vec{v} y \vec{w} son linealmente independientes, entonces $\{\vec{u}+\vec{v},\vec{v}+\vec{w},\vec{w}+\vec{u}\}$ también son linealmente independientes.
- **6.** Sea un espacio vectorial $\{V,+,\cdot R\}$. Demostrar que si los vectores \vec{u} , \vec{v} y \vec{w} son linealmente independientes, entonces $\{\vec{u},\vec{u}+\vec{v},\vec{u}+\vec{v}+\vec{w}\}$ también son linealmente independientes.
- **7.** Hallar la condición que debe cumplir el vector $(x, y, z) \in R^3$ para formar una base de R^3 junto con los vectores (1,0,1) y (-1,2,0).
- **8.** Hallar un vector de $\{R^3,+,\cdot R\}$ cuyas coordenadas respecto de la base **B** formada por los vectores $\{(-1,2,0),(0,0,3),(0,-2,1)\}$ sean: (a) (1,2,3) (b) (-1,5,0).
- **9.** ¿Pertenece el vector (2,1,3,-7) al subespacio engendrado por (1,3,3,0) y (2,1,5,2)?
- **10.** Determina los valores de a y b para que el vector (1,4,a,b) sea combinación lineal de los vectores (1,2,-1,2) y (0,1,2,1).
- **11.** Determina b para que los vectores (b,-3,2), (2,3,b) y (4,6,-4) formen un espacio unidimensional.
- **12.** Sean $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4 \in R^3$. ¿Pueden $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ formar una base de R^3 ? ¿Y un sistema generador?