Capítulo 4. Cálculo de Probabilidades

4.1 Resumen Teórico de Cálculo de Probabilidades

4.1.1 Introducción (referencias históricas)

El origen de la Probabilidad se encuentra en la fascinación que presentan los juegos de azar y la especulación sobre los posibles resultados de la realización de un experimento aleatorio.

En uno de los primeros tratados de Aritmética existentes, Filippo Calandri, nacido en Siena en el año 1467 , publica una primera versión del problema del reparto de apuestas que posteriormente se popularizaría con el nombre de "la apuesta interrumpida".

El problema consiste en lo siguiente:
"Dos jugadores A y B apuestan una misma cantidad de dinero a un juego. Ganará lo apostado por ambos el que consiga primero cinco puntos. Ambos jugadores tienen la misma posibilidad de obtener un punto cada vez que juegan. En un momento determinado el jugador A tiene 4 puntos y el jugador $B 3$ puntos. Si entonces se interrumpe el juego, ¿cómo debe repartirse, en justicia, la cantidad apostada por ambos?"

La solución aportada por Calandri y las obtenidas más tarde por Luca Pacioli (1445-1514) y por Nicolo Fontana, apodado el Tartaglia, (1500-1557) fue incorrecta.

Su razonamiento se basaba en considerar los puntos ya obtenidos por cada jugador en el momento de la interrupción y no en las posibilidades de ganar que tendría cada uno, si el juego hubiese continuado.

La solución correcta a este problema y al problema de la "apuesta ventajosa" la aportaron más tarde Blas Pascal (1623-1662) y Pierre de Fermat (1601-1665). En la correspondencia que mantuvieron al respecto se sentaron las bases del Cálculo de Probabilidades y de la Teoría de Juegos.

En el siglo XVII los juegos de azar eran la principal diversión de la alta sociedad francesa. En 1654, Antoine Gombauld conocido como el Caballero de Meré, jugador profesional, planteó al matemático Blas Pascal (1623-1662) el problema de la "apuesta ventajosa".

El Caballero de Meré sabía que era ventajoso apostar por el resultado de obtener al menos un seis en una serie de 4 lanzamientos de un dado. Entonces argumentó, razonando por simple "regla de tres", que debería ser igualmente ventajoso apostar por el resultado de obtener al menos un doble seis en una serie de 24 lanzamientos con un par de dados, puesto que apostar por 1 resultado de 6 en 4 lanzamientos debería de ser como hacerlo por 1 resultado de 6×6 en 4×6 lanzamientos.

La experiencia del Caballero de Meré no corroboraba su suposición, y, en efecto, Pascal y Fermat en la correspondencia que mantuvieron al respecto de este problema, justificaron que si bien la primera apuesta sí es ventajosa, la segunda no lo es.

En los comienzos de la Probabilidad hay que destacar a uno de los personajes históricos más relevantes, aunque no muy reconocido, Girolamo Cardano (1501-1576). Fue uno de los más brillantes científicos de su tiempo y publicó muchos de sus trabajos.

Cardano escribió "El libro de los juegos de azar" alrededor de 1520, aunque no fue publicado hasta 1663. Jugó y escribió sobre casi todos los juegos de su tiempo (dados, juegos de naipes, ajedrez, backgammon,...). Sus observaciones morales sobre el juego son perspicaces y graciosas por la incapacidad de seguir sus propios consejos. Jugaba constantemente, con apuestas grandes y sin importarle la condición de su oponente.

También Galileo Galilei (1564-1642) establece la noción de probabilidad de un suceso A como la proporción de resultados favorables a A respecto del número total de resultados posibles, y relaciona problemas combinatorios y juegos de azar. Es conocido el problema planteado a Galileo por el Príncipe de Toscana, gran aficionado a los juegos de dados: "¿Por qué al tirar tres dados y sumar sus resultados es más frecuente obtener 10 puntos que 9 , a pesar de que en ambos casos hay seis formas distintas de obtener dichas sumas?". Galileo demostró que los dos resultados no eran igualmente probables, y la solución se recogió en el libro "Consideraciones sobre el juego de los dados" publicado en 1718, mucho años después de la muerte de su autor.

Otra contribución importante a la Teoría de la Probabilidad se debe a Christian Huygens (1629-1695) que visitó Francia atraído por las investigaciones realizadas por Pascal y Fermat.

Jacob Bernouilli (1654-1705) en su tratado "Ars Conjectandi" de 1713 justificó la identificación de probabilidad y frecuencia mediante su "Ley de los grandes números". El reverendo Thomas Bayes (1702-1761), matemático inglés, dedicó su vida al estudio de "las causas de los hechos".

Hasta Pierre de Laplace (1749-1827) la Teoría de la Probabilidad se relacionaba solamente con el desarrollo de las Matemáticas y de los juegos de azar. Es en 1812 cuando Laplace publica su obra "Teoría Analítica de la Probabilidades" introduciendo nuevas ideas y técnicas, aplicándolas a otros problemas científicos como la teoría de errores y la mecánica estadística.

Lo mismo que en otras ramas de la Matemática, el desarrollo de la Teoría de la Probabilidad se ve estimulado por sus aplicaciones a otras ciencias. Hay que destacar, también, en el desarrollo de esta Teoría a los matemáticos: Joseph Louis Lagrange (1736-1813), Carl Friedrich Gauss (1777-1855), Simeón-Denis Poisson (1781-1840), entre otros.

Entre 1850 y 1900 el desarrollo de la Probabilidad fue dominado por la escuela rusa (San Petersburgo). Las figuras más prominentes fueron Chebyshev (1821-1894) y sus discípulos Markov (1856-1922) y Liapunov (1857-1918).

Al comienzo del siglo 20 la necesidad de aplicaciones de la Probabilidad se incrementan en la física, economía, pólizas de seguros, comunicaciones telefónicas, etc. Avances importantes fueron hechos por Albert Einstein (1879-1955), Ernest Rutherford (1871-1937) y el astrónomo sueco Carl Charlier (1862-1934), que ideó modelos estadísticos de las estrellas de nuestra galaxia. Karl Pearson (1857-1936) aplicó la Estadística a problemas biológicos de la herencia y la evolución.

Una de las dificultades en el desarrollo de la Teoría de la Probabilidad fue el obtener una definición precisa del concepto de Probabilidad.

La búsqueda de esta definición duró casi tres siglos y fue resuelta, finalmente, a partir del año 1930 por el ruso Andrey Kolmogorov (1903-1987) quien estableció con sus axiomas para el Cálculo de Probabilidades las bases matemáticas para asentar esta Teoría.

4.1.2 Experimentos aleatorios. Espacio muestral. Espacio de sucesos

Las características que definen a un experimento como "aleatorio" o de "azar" son:

1. Es posible repetirlo de forma indefinida sin cambiar esencialmente sus condiciones de realización.
2. No es posible predecir cuál será el resultado que se obtendrá en una experiencia concreta.
3. Podemos describir al conjunto de todos los resultados posibles en la realización del experimento.
4. Cuando el experimento se repite un gran número de veces aparece un modelo definido de regularidad.

Espacio muestral (E) : conjunto de todos los resultados posibles en la realización de un experimento aleatorio.

Suceso elemental o punto muestral: cada uno de los elementos del espacio muestral.
Suceso: cada uno de los subconjuntos posibles del espacio muestral. Un suceso, es pues, un conjunto de sucesos elementales.

Suceso seguro: el propio espacio muestral.
Suceso imposible (ϕ) : no se realiza en ninguna prueba.

Espacio de sucesos (S) : conjunto formado por todos los sucesos posibles. Es el conjunto de todas las partes del espacio muestral.

En este nivel sólo se considerarán espacios muestrales finitos. En ese caso, si el número de sucesos elementales del espacio muestral (E) es n, el número de sucesos del espacio de sucesos (S) es 2^{n}.

4.1.3 Operaciones con sucesos. Álgebra de sucesos

Unión de sucesos: Dados dos sucesos A y B se define la unión de ambos sucesos, y se representa por $A \cup B$, al suceso que ocurre cuando se ha realizado A, B ó ambos.

Intersección de sucesos: Dados dos sucesos A y B se define la intersección de ambos sucesos, y se representa por $A \cap B$, al suceso que ocurre cuando se ha realizado A y B simultáneamente.

Diferencia de sucesos: Dados dos sucesos A y B se define la diferencia entre el primero y el segundo, y se representa por $A-B$, al suceso que ocurre cuando se ha realizado A y no B.

Suceso complementario (suceso contrario): Dado el suceso A se define el suceso complementario, o contrario, de A y se representa por A^{C}, al suceso que ocurre cuando no se ha realizado A.

Diferencia simétrica: Dados dos sucesos A y B se define la diferencia simétrica entre ambos sucesos, y se representa por $A \Delta B$, como $A \Delta B=(A \cup B)-(A \cap B)$.

Sucesos incompatibles, o mutuamente excluyentes: Dos sucesos A y B se dicen incompatibles cuando $A \cap B=\phi$.

Las operaciones entre sucesos verifican las siguientes propiedades:

Conmutativa:	$A \cup B=B \cup A$	$A \cap B=B \cap A$
Asociativa:	$A \cup(B \cup C)=(A \cup B) \cup C$	$A \cap(B \cap C)=(A \cap B) \cap C$
Idempotente:	$A \cup A=A$	$A \cap A=A$
Absorción:	$A \cup(A \cap B)=A$	$A \cap(A \cup B)=A$
Elemento neutro:	$A \cup \phi=A$	$A \cap E=A$
Elemento absorbente:	$A \cup E=E$	$A \cap \phi=\phi$

Distributiva:	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Simplificativa:	$A \subseteq B \Rightarrow A \cup B=B$	$A \subseteq B \Rightarrow A \cap B=A$
Complementación:	$A \cup A^{C}=E \quad A \cap A^{C}=\phi \quad E^{C}=\phi \quad \phi^{C}=E$	
Involución	$\left(A^{C}\right)^{C}=A$	$(A \cap B)^{C}=A^{C} \cup B^{C}$
Leyes de Morgan:	$(A \cup B)^{C}=A^{C} \cap B^{C}$	

El espacio de sucesos S asociado a un experimento aleatorio con las operaciones de unión, intersección y diferencia constituye un Álgebra de Boole, conocido con el nombre de Álgebra de Boole de sucesos asociada a un experimento aleatorio.

4.1.4 Definición clásica de probabilidad

Dado un suceso A, la probabilidad de que ocurra este suceso se obtiene dividiendo el número de casos en que puede ocurrir el suceso A entre el número de casos posibles que se pueden presentar al realizar el experimento aleatorio. (Esta definición es válida sólo para experimentos cuyos sucesos elementales sean equiprobables).

Regla de Laplace: $P(A)=\frac{\text { número de casos favorables para } A}{\text { número de casos posibles }}$

4.1.5 Definición frecuencial de probabilidad

Cuando se repite un experimento una gran cantidad de veces y se observa la aparición de un resultado (suceso A) se establece como frecuencia relativa de ese suceso al cociente entre el número de veces que ocurrió A, n_{A}, y el número de veces, n, que se repitió la experiencia. Si el experimento es considerado como aleatorio es posible extraer cierta regularidad (constancia) en este cociente cuando el número n es muy grande. Se define entonces la probabilidad del suceso A :
$P(A)=\lim _{n \rightarrow \infty} \frac{n_{A}}{n}$
Es decir, la frecuencia relativa del suceso se estabiliza en un valor que es la probabilidad teórica del suceso A, siendo la frecuencia relativa la probabilidad empírica del suceso A.

4.1.6 La probabilidad como medida de sucesos del espacio muestral. Axiomas de Cálculo de Probabilidades

Toda aplicación $P: S \rightarrow R$ definida sobre el espacio de sucesos asociado a un experimento aleatorio se dice que es una medida de probabilidad sobre S, si satisface los siguientes axiomas, conocidos como axiomas de la probabilidad:

Axioma 1: Para cada suceso $A \in S$ se verifica que $P(A) \geq 0$.
Axioma 2: La probabilidad del suceso seguro es 1 , es decir $P(E)=1$.
Axioma 3: Si A y B son dos sucesos incompatibles, $A \cap B=\phi$, se verifica entonces que: $P(A \cup B)=P(A)+P(B)$.

A la terna (E, S, P), donde E es el espacio muestral (en nuestro caso, finito) asociado a un experimento aleatorio, S su espacio de sucesos y P una medida de probabilidad definida sobre S se le llama "espacio probabilístico".

De los tres axiomas de la probabilidad se deducen las siguientes propiedades que verifican los sucesos asociados a un experimento aleatorio:

1. $P(\phi)=0$.
2. Para todo suceso A se verifica que $P\left(A^{C}\right)=1-P(A)$.
3. Si A y B son dos sucesos tales que $A \subseteq B$, entonces $P(A) \leq P(B)$.
4. Para dos sucesos cualesquiera A y B se verifica que: $P(A-B)=P(A)-P(A \cap B)$.
5. Si k sucesos de un mismo espacio son incompatibles dos a dos, entonces la probabilidad de su unión es igual a la suma de sus probabilidades individuales.
6. Para dos sucesos cualesquiera A y B se verifica que:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
7. En espacios muestrales, en los que los sucesos elementales sean equiprobables, como consecuencia de la propiedad 5, podemos afirmar que la probabilidad de uno cualquiera de esos sucesos elementales es 1 dividido por n, siendo n el número de sucesos elementales que constituyen ese espacio muestral.
8. Bajo el mismo supuesto de equiprobabilidad de los sucesos elementales, podemos generalizar la propiedad anterior a un suceso cualquiera, constituido por h sucesos elementales, afirmando que la probabilidad de éste es el cociente entre h y n.
Hemos llegado, mediante un proceso formal, al concepto clásico de probabilidad.

4.1.7 Probabilidad condicionada. Dependencia e independencia de sucesos

Si A es un suceso del espacio probabilístico (E, S, P), con $P(A) \neq 0$, se define la aplicación $P([] / A): S \rightarrow R$ de la forma: $P(X / A)=\frac{P(X \cap A)}{P(A)}$.

A $P(X / A)$ para cada $X \in S$ se le llama "probabilidad de X condicionada por A ".
Es fácil comprobar que $P([] / A)$ es una medida de probabilidad sobre S.
Teorema de la probabilidad compuesta, o teorema de la multiplicación de probabilidades: "Si A y B son dos sucesos de un mismo espacio, con $P(A) \neq 0$ y $P(B) \neq 0$, entonces: $P(A \cap B)=P(A) \cdot P(B / A)=P(B) \cdot P(A / B) "$.

Se dice que un suceso A es independiente de otro B, si $P(A)=P(A / B)$.
Resulta evidente, del teorema de la probabilidad compuesta, que si un suceso A es independiente de otro B entonces, también es B independiente de A; por ello, lo correcto al hablar de independencia de sucesos es decir: " A y B son dos sucesos independientes".

Pues bien, A y B son dos sucesos independientes si y sólo si $P(A \cap B)=P(A) \cdot P(B)$.

4.1.8 Teorema de la probabilidad total

Sea B un suceso cualquiera del espacio S con probabilidad no nula y sean $A_{1}, A_{2}, A_{3}, \ldots$, A_{n} una partición del espacio muestral (esto es, un conjunto de sucesos incompatibles dos a dos, de probabilidad no nula, y cuya unión sea el espacio muestral). Entonces:

$$
P(B)=P\left(A_{1}\right) \cdot P\left(B / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(B / A_{2}\right)+\cdots+P\left(A_{n}\right) \cdot P\left(B / A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B / A_{i}\right)
$$

4.1.9 Teorema de Bayes (o teorema de las probabilidades de las causas)

Sea E el espacio muestral asociado a un experimento aleatorio, y sea $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ una partición de ese espacio muestral. Si en una prueba de ese experimento aleatorio se realiza un suceso B, con $P(B) \neq 0$, entonces la probabilidad de que B haya ocurrido a causa del suceso A_{k}, siendo k uno de los valores de 1 a n, es:
$P\left(A_{k} / B\right)=\frac{P\left(A_{k} \cap B\right)}{P(B)}=\frac{P\left(A_{k}\right) \cdot P\left(B / A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) \cdot P\left(B / A_{i}\right)}$

