CRITERIOS DE CALIFICACIÓN 3º ESO

Según el artículo 9, apartado 6, de la INSTRUCCIÓN CONJUNTA 1 /2022, DE 23 DE JUNIO:

Los criterios de calificación estarán basados en la superación de los criterios de evaluación y, por tanto, de las competencias específicas, y estarán recogidos en las programaciones didácticas.

Competencias específicas.

- 1. Comprender y relacionar los motivos por los que ocurren los principales fenómenos fisicoquímicos del entorno, explicándolos en términos de las leyes y teorías científicas adecuadas, para resolver problemas con el fin de aplicarlas para mejorar la realidad cercana y la calidad de vida humana.
- 2. Expresar las observaciones realizadas por el alumnado en forma de preguntas, formulando hipótesis para explicarlas y demostrando dichas hipótesis a través de la experimentación científica, la indagación y la búsqueda de evidencias, para desarrollar los razonamientos propios del pensamiento científico y mejorar las destrezas en el uso de las metodologías científicas.
- 3. Manejar con soltura las reglas y normas básicas de la física y la química en lo referente al lenguaje de la IUPAC, al lenguaje matemático, al empleo de unidades de medida correctas, al uso seguro del laboratorio y a la interpretación y producción de datos e información en diferentes formatos y fuentes, para reconocer el carácter universal y transversal del lenguaje científico y la necesidad de una comunicación fiable en investigación y ciencia entre diferentes países y culturas.
- 4. Utilizar de forma crítica, eficiente y segura plataformas digitales y recursos variados, tanto para el trabajo individual como en equipo, para fomentar la creatividad, el desarrollo personal y el aprendizaje individual y social, mediante la consulta de información, la creación de materiales y la comunicación efectiva en los diferentes entornos de aprendizaje.
- 5. Utilizar las estrategias propias del trabajo colaborativo, potenciando el crecimiento entre iguales como base emprendedora de una comunidad científica crítica, ética y eficiente, para comprender la importancia de la ciencia en la mejora de la sociedad, las aplicaciones y repercusiones de los avances científicos, la preservación de la salud y la conservación sostenible del medio ambiente.
- 6. Comprender y valorar la ciencia como una construcción colectiva en continuo cambio y evolución, en la que no solo participan las personas dedicadas a ella, sino que también requiere de una interacción con el resto de la sociedad, para obtener resultados que repercutan en el avance tecnológico, económico, ambiental y social.

Criterios de evaluación para 3º ESO

Competencia específica 1

- 1.1. Identificar, comprender y explicar los fenómenos fisicoquímicos cotidianos más relevantes, a partir de los principios, teorías y leyes científicas adecuadas, expresándolos, de manera argumentada, utilizando diversidad de soportes y medios de comunicación.
- 1.2. Resolver los problemas fisicoquímicos planteados utilizando las leyes y teorías científicas adecuadas, razonando los procedimientos utilizados para encontrar las soluciones y expresando adecuadamente los resultados.
- 1.3. Reconocer y describir en el entorno inmediato situaciones problemáticas reales de índole científica y emprender iniciativas en las que la ciencia, y en particular la física y la química, pueden contribuir a su solución, analizando críticamente su impacto en la sociedad.

Competencia específica 2

- 2.1. Emplear las metodologías propias de la ciencia para identificar y describir fenómenos a partir de cuestiones a las que se pueda dar respuesta a través de la indagación, la deducción, el trabajo experimental y el razonamiento lógico-matemático, diferenciándolas de aquellas pseudocientíficas que no admiten comprobación experimental.
- 2.2. Seleccionar, de acuerdo con la naturaleza de las cuestiones que se traten, la mejor manera de comprobar o refutar las hipótesis formuladas, para diseñar estrategias de indagación y búsqueda de evidencias que permitan obtener conclusiones y repuestas ajustadas a la naturaleza de la pregunta formulada.
- 2.3. Aplicar las leyes y teorías científicas conocidas para formular cuestiones e hipótesis, de manera informada y coherente con el conocimiento científico existente y diseñar los procedimientos experimentales o deductivos necesarios para resolverlas o comprobarlas.

Competencia específica 3

- 3.1. Emplear datos en diferentes formatos para interpretar y comunicar información relativa a un proceso fisicoquímico concreto, relacionando entre sí lo que cada uno de ellos contiene, y extrayendo en cada caso lo más relevante para la resolución de un problema.
- 3.2. Utilizar adecuadamente las reglas básicas de la física y la química, incluyendo el uso de unidades de medida, las herramientas matemáticas y las reglas de nomenclatura, consiguiendo una comunicación efectiva con toda la comunidad científica.
- 3.3. Poner en práctica las normas de uso de los espacios específicos de la ciencia, como el laboratorio de física y química, como medio de asegurar la salud propia y colectiva, la conservación sostenible del medioambiente y el cuidado de las instalaciones.

Competencia específica 4

4.1. Utilizar recursos variados, tradicionales y digitales, mejorando el aprendizaje autónomo y para mejorar la interacción con otros miembros de la comunidad educativa, con respeto hacia docentes y estudiantes y analizando críticamente las aportaciones de cada participante.

4.2. Trabajar de forma adecuada y versátil con medios variados, tradicionales y digitales, en la consulta de información y la creación de contenidos, seleccionando con criterio las fuentes más fiables y desechando las menos adecuadas para la mejora del aprendizaje propio y colectivo.

Competencia específica 5

- 5.1. Establecer interacciones constructivas y coeducativas, emprendiendo actividades de cooperación y del uso de las estrategias propias del trabajo colaborativo, como forma de construir un medio de trabajo eficiente en la ciencia.
- 5.2. Emprender, de forma guiada y de acuerdo a la metodología adecuada, proyectos científicos que involucren al alumnado en la mejora de la sociedad y que creen valor para el individuo y para la comunidad, tanto local como globalmente.

Competencia específica 6

- 6.1. Reconocer y valorar, a través del análisis histórico de los avances científicos logrados por hombres y mujeres de ciencia y los avances científicos, que la ciencia es un proceso en permanente construcción y las repercusiones mutuas de la ciencia actual con la tecnología, la sociedad y el medioambiente.
- 6.2. Detectar en el entorno las necesidades tecnológicas, ambientales, económicas y sociales más importantes que demanda la sociedad, entendiendo la capacidad de la ciencia para darles solución sostenible a través de la implicación de todos los ciudadanos.

Saberes básicos

- A. Las destrezas científicas básicas
- FYQ.3.A.1. Metodologías de la investigación científica: identificación y formulación de cuestiones, elaboración de hipótesis y comprobación experimental de las mismas.
- FYQ.3.A.2. Trabajo experimental y proyectos de investigación: estrategias en la resolución de problemas y en el desarrollo de las investigaciones mediante la indagación, la deducción, la búsqueda de evidencias y el razonamiento lógicomatemático, haciendo inferencias válidas de las observaciones y obteniendo conclusiones.
- FYQ.3.A.3. Diversos entornos y recursos de aprendizaje científico, como el laboratorio o los entornos virtuales: materiales, sustancias y herramientas tecnológicas, atendiendo a las normas de uso de cada espacio para asegurar la conservación de la salud propia y comunitaria, la seguridad en redes y el respeto hacia el medioambiente.
- FYQ.3.A.4. Uso del lenguaje científico, incluyendo el manejo adecuado de sistemas de unidades, utilizando preferentemente el Sistema Internacional de Unidades y la notación científica para expresar los resultados, y herramientas matemáticas, para conseguir una comunicación argumentada con diferentes entornos científicos y de aprendizaje.
- FYQ.3.A.5. Interpretación y producción de información científica en diferentes formatos y a partir de diferentes medios para desarrollar un criterio propio basado en lo que el pensamiento científico aporta a la mejora de la sociedad.
- FYQ.3.A.6. Valoración de la cultura científica y del papel de científicos y científicas en los principales hitos históricos y actuales de la física y la química para el avance y la mejora de la sociedad. La Ciencia en Andalucía.

B. La materia

- FYQ.3.B.1. Teoría cinético-molecular: aplicación a observaciones sobre la materia para explicar sus propiedades, los estados de agregación y los cambios de estado, y la formación de mezclas y disoluciones, así como la concentración de las mismas y las leyes de los gases ideales.
- FYQ.3.B.2. Realización de experimentos relacionados con los sistemas materiales para conocer y describir sus propiedades; densidad, composición y clasificación, así como los métodos de separación de una mezcla.
- FYQ.3.B.3. Aplicación de los conocimientos sobre la estructura atómica de la materia para entender y explicar la formación de estructuras más complejas, de iones, la existencia de isótopos y sus propiedades, el desarrollo histórico del modelo atómico y la ordenación y clasificación de los elementos en la Tabla Periódica.
- FYQ.3.B.4. Principales compuestos químicos: su formación y sus propiedades físicas y químicas, valoración de sus aplicaciones. Masa atómica y masa molecular.
- FYQ.3.B.5. Participación de un lenguaje científico común y universal a través de la formulación y nomenclatura de sustancias simples, iones monoatómicos y compuestos binarios mediante las reglas de nomenclatura de la IUPAC.

C. La energía

FYQ.3.C.1. Formulación de cuestiones e hipótesis sobre la energía, el calor y el equilibrio térmico, sus manifestaciones y sus propiedades, y explicación del concepto

de temperatura en términos del modelo cinético-molecular, para describirla como la causa de todos los procesos de cambio.

- FYQ.3.C.2. Diseño y comprobación experimental de hipótesis, relacionadas con el uso doméstico e industrial de la energía en sus distintas formas y las transformaciones entre ellas.
- FYQ.3.C.3. Elaboración fundamentada de hipótesis sobre el medioambiente y la sostenibilidad a partir de las diferencias entre fuentes de energía renovables y no renovables. Energías renovables en Andalucía.
- FYQ.3.C.4. Análisis y aplicación de los efectos del calor sobre la materia para aplicarlos en situaciones cotidianas.
- FYQ.3.C.5. Consideración de la naturaleza eléctrica de la materia y explicación del fenómeno físico de la corriente eléctrica con base en la Ley de Ohm así como diseño y construcción de circuitos eléctricos en laboratorio o de forma virtual, y la obtención de energía eléctrica para desarrollar conciencia sobre la necesidad del ahorro energético y la conservación sostenible del medioambiente.

D. La interacción

- FYQ.3.D.1. Predicción de movimientos sencillos a partir de los conceptos de la cinemática posición, velocidad y aceleración, para formular hipótesis comprobables sobre valores futuros de estas magnitudes, y validación de dichas hipótesis a través del cálculo numérico, la interpretación de gráficas o el trabajo experimental.
- FYQ.3.D.2. Relación de los efectos de las principales fuerzas de la naturaleza como la gravitatoria, eléctrica y magnética, como agentes del cambio tanto en el estado de movimiento o el de reposo de un cuerpo, así como productoras de deformaciones, con los cambios que producen en los sistemas sobre los que actúan.
- FYQ.3.D.3. Aplicación de las leyes de Newton, de la Ley de Gravitación Universal, de la Ley de Hooke, de la Ley de Coulomb y del modelo de un imán, descritas a partir de observaciones cotidianas y de laboratorio, y especialmente de los experimentos de Oersted y Faraday, para entender cómo se comportan e interaccionan entre sí los sistemas materiales ante la acción de las fuerzas y predecir los efectos de estas en situaciones cotidianas y de seguridad vial.

E. El cambio

- FYQ.3.E.1. Análisis de los diferentes tipos de cambios que experimentan los sistemas materiales para relacionarlos con las causas que los producen y con las consecuencias que tienen.
- FYQ.3.E.2. Interpretación de las reacciones químicas a nivel macroscópico y microscópico, en términos del modelo atómico-molecular de la materia y de la teoría de colisiones, para explicar las relaciones de la química con el medioambiente, la tecnología y la sociedad.
- FYQ.3.E.3. Aplicación de la ley de conservación de la masa y de la ley de las proporciones definidas, para utilizarlas mediante cálculos estequiométricos como evidencias experimentales que permitan validar el modelo atómico-molecular de la materia.
- FYQ.3.E.4. Análisis de los factores que afectan a las reacciones químicas para predecir su evolución de forma cualitativa y entender su importancia en la resolución de problemas actuales por parte de la ciencia.